3.8.38 \(\int \frac {(a+b x^2+c x^4)^{3/2}}{x^3} \, dx\)

Optimal. Leaf size=150 \[ \frac {3 \left (4 a c+b^2\right ) \tanh ^{-1}\left (\frac {b+2 c x^2}{2 \sqrt {c} \sqrt {a+b x^2+c x^4}}\right )}{16 \sqrt {c}}-\frac {\left (a+b x^2+c x^4\right )^{3/2}}{2 x^2}+\frac {3}{8} \left (3 b+2 c x^2\right ) \sqrt {a+b x^2+c x^4}-\frac {3}{4} \sqrt {a} b \tanh ^{-1}\left (\frac {2 a+b x^2}{2 \sqrt {a} \sqrt {a+b x^2+c x^4}}\right ) \]

________________________________________________________________________________________

Rubi [A]  time = 0.17, antiderivative size = 150, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.350, Rules used = {1114, 732, 814, 843, 621, 206, 724} \begin {gather*} \frac {3 \left (4 a c+b^2\right ) \tanh ^{-1}\left (\frac {b+2 c x^2}{2 \sqrt {c} \sqrt {a+b x^2+c x^4}}\right )}{16 \sqrt {c}}-\frac {\left (a+b x^2+c x^4\right )^{3/2}}{2 x^2}+\frac {3}{8} \left (3 b+2 c x^2\right ) \sqrt {a+b x^2+c x^4}-\frac {3}{4} \sqrt {a} b \tanh ^{-1}\left (\frac {2 a+b x^2}{2 \sqrt {a} \sqrt {a+b x^2+c x^4}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*x^2 + c*x^4)^(3/2)/x^3,x]

[Out]

(3*(3*b + 2*c*x^2)*Sqrt[a + b*x^2 + c*x^4])/8 - (a + b*x^2 + c*x^4)^(3/2)/(2*x^2) - (3*Sqrt[a]*b*ArcTanh[(2*a
+ b*x^2)/(2*Sqrt[a]*Sqrt[a + b*x^2 + c*x^4])])/4 + (3*(b^2 + 4*a*c)*ArcTanh[(b + 2*c*x^2)/(2*Sqrt[c]*Sqrt[a +
b*x^2 + c*x^4])])/(16*Sqrt[c])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 732

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(
a + b*x + c*x^2)^p)/(e*(m + 1)), x] - Dist[p/(e*(m + 1)), Int[(d + e*x)^(m + 1)*(b + 2*c*x)*(a + b*x + c*x^2)^
(p - 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ
[2*c*d - b*e, 0] && GtQ[p, 0] && (IntegerQ[p] || LtQ[m, -1]) && NeQ[m, -1] &&  !ILtQ[m + 2*p + 1, 0] && IntQua
draticQ[a, b, c, d, e, m, p, x]

Rule 814

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[((d + e*x)^(m + 1)*(c*e*f*(m + 2*p + 2) - g*(c*d + 2*c*d*p - b*e*p) + g*c*e*(m + 2*p + 1)*x)*(a + b*x + c*x^
2)^p)/(c*e^2*(m + 2*p + 1)*(m + 2*p + 2)), x] - Dist[p/(c*e^2*(m + 2*p + 1)*(m + 2*p + 2)), Int[(d + e*x)^m*(a
 + b*x + c*x^2)^(p - 1)*Simp[c*e*f*(b*d - 2*a*e)*(m + 2*p + 2) + g*(a*e*(b*e - 2*c*d*m + b*e*m) + b*d*(b*e*p -
 c*d - 2*c*d*p)) + (c*e*f*(2*c*d - b*e)*(m + 2*p + 2) + g*(b^2*e^2*(p + m + 1) - 2*c^2*d^2*(1 + 2*p) - c*e*(b*
d*(m - 2*p) + 2*a*e*(m + 2*p + 1))))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && NeQ[b^2 - 4*a*c, 0
] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && GtQ[p, 0] && (IntegerQ[p] ||  !RationalQ[m] || (GeQ[m, -1] && LtQ[m, 0])
) &&  !ILtQ[m + 2*p, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])

Rule 843

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rule 1114

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[Int[x^((m - 1)/2)*(a +
 b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, p}, x] && IntegerQ[(m - 1)/2]

Rubi steps

\begin {align*} \int \frac {\left (a+b x^2+c x^4\right )^{3/2}}{x^3} \, dx &=\frac {1}{2} \operatorname {Subst}\left (\int \frac {\left (a+b x+c x^2\right )^{3/2}}{x^2} \, dx,x,x^2\right )\\ &=-\frac {\left (a+b x^2+c x^4\right )^{3/2}}{2 x^2}+\frac {3}{4} \operatorname {Subst}\left (\int \frac {(b+2 c x) \sqrt {a+b x+c x^2}}{x} \, dx,x,x^2\right )\\ &=\frac {3}{8} \left (3 b+2 c x^2\right ) \sqrt {a+b x^2+c x^4}-\frac {\left (a+b x^2+c x^4\right )^{3/2}}{2 x^2}-\frac {3 \operatorname {Subst}\left (\int \frac {-4 a b c-c \left (b^2+4 a c\right ) x}{x \sqrt {a+b x+c x^2}} \, dx,x,x^2\right )}{16 c}\\ &=\frac {3}{8} \left (3 b+2 c x^2\right ) \sqrt {a+b x^2+c x^4}-\frac {\left (a+b x^2+c x^4\right )^{3/2}}{2 x^2}+\frac {1}{4} (3 a b) \operatorname {Subst}\left (\int \frac {1}{x \sqrt {a+b x+c x^2}} \, dx,x,x^2\right )+\frac {1}{16} \left (3 \left (b^2+4 a c\right )\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {a+b x+c x^2}} \, dx,x,x^2\right )\\ &=\frac {3}{8} \left (3 b+2 c x^2\right ) \sqrt {a+b x^2+c x^4}-\frac {\left (a+b x^2+c x^4\right )^{3/2}}{2 x^2}-\frac {1}{2} (3 a b) \operatorname {Subst}\left (\int \frac {1}{4 a-x^2} \, dx,x,\frac {2 a+b x^2}{\sqrt {a+b x^2+c x^4}}\right )+\frac {1}{8} \left (3 \left (b^2+4 a c\right )\right ) \operatorname {Subst}\left (\int \frac {1}{4 c-x^2} \, dx,x,\frac {b+2 c x^2}{\sqrt {a+b x^2+c x^4}}\right )\\ &=\frac {3}{8} \left (3 b+2 c x^2\right ) \sqrt {a+b x^2+c x^4}-\frac {\left (a+b x^2+c x^4\right )^{3/2}}{2 x^2}-\frac {3}{4} \sqrt {a} b \tanh ^{-1}\left (\frac {2 a+b x^2}{2 \sqrt {a} \sqrt {a+b x^2+c x^4}}\right )+\frac {3 \left (b^2+4 a c\right ) \tanh ^{-1}\left (\frac {b+2 c x^2}{2 \sqrt {c} \sqrt {a+b x^2+c x^4}}\right )}{16 \sqrt {c}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.12, size = 134, normalized size = 0.89 \begin {gather*} \frac {1}{16} \left (\frac {3 \left (4 a c+b^2\right ) \tanh ^{-1}\left (\frac {b+2 c x^2}{2 \sqrt {c} \sqrt {a+b x^2+c x^4}}\right )}{\sqrt {c}}+\frac {2 \sqrt {a+b x^2+c x^4} \left (-4 a+5 b x^2+2 c x^4\right )}{x^2}-12 \sqrt {a} b \tanh ^{-1}\left (\frac {2 a+b x^2}{2 \sqrt {a} \sqrt {a+b x^2+c x^4}}\right )\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x^2 + c*x^4)^(3/2)/x^3,x]

[Out]

((2*Sqrt[a + b*x^2 + c*x^4]*(-4*a + 5*b*x^2 + 2*c*x^4))/x^2 - 12*Sqrt[a]*b*ArcTanh[(2*a + b*x^2)/(2*Sqrt[a]*Sq
rt[a + b*x^2 + c*x^4])] + (3*(b^2 + 4*a*c)*ArcTanh[(b + 2*c*x^2)/(2*Sqrt[c]*Sqrt[a + b*x^2 + c*x^4])])/Sqrt[c]
)/16

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.67, size = 138, normalized size = 0.92 \begin {gather*} -\frac {3 \left (4 a c+b^2\right ) \log \left (-2 \sqrt {c} \sqrt {a+b x^2+c x^4}+b+2 c x^2\right )}{16 \sqrt {c}}+\frac {\sqrt {a+b x^2+c x^4} \left (-4 a+5 b x^2+2 c x^4\right )}{8 x^2}+\frac {3}{2} \sqrt {a} b \tanh ^{-1}\left (\frac {\sqrt {c} x^2}{\sqrt {a}}-\frac {\sqrt {a+b x^2+c x^4}}{\sqrt {a}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(a + b*x^2 + c*x^4)^(3/2)/x^3,x]

[Out]

(Sqrt[a + b*x^2 + c*x^4]*(-4*a + 5*b*x^2 + 2*c*x^4))/(8*x^2) + (3*Sqrt[a]*b*ArcTanh[(Sqrt[c]*x^2)/Sqrt[a] - Sq
rt[a + b*x^2 + c*x^4]/Sqrt[a]])/2 - (3*(b^2 + 4*a*c)*Log[b + 2*c*x^2 - 2*Sqrt[c]*Sqrt[a + b*x^2 + c*x^4]])/(16
*Sqrt[c])

________________________________________________________________________________________

fricas [A]  time = 2.13, size = 713, normalized size = 4.75 \begin {gather*} \left [\frac {12 \, \sqrt {a} b c x^{2} \log \left (-\frac {{\left (b^{2} + 4 \, a c\right )} x^{4} + 8 \, a b x^{2} - 4 \, \sqrt {c x^{4} + b x^{2} + a} {\left (b x^{2} + 2 \, a\right )} \sqrt {a} + 8 \, a^{2}}{x^{4}}\right ) + 3 \, {\left (b^{2} + 4 \, a c\right )} \sqrt {c} x^{2} \log \left (-8 \, c^{2} x^{4} - 8 \, b c x^{2} - b^{2} - 4 \, \sqrt {c x^{4} + b x^{2} + a} {\left (2 \, c x^{2} + b\right )} \sqrt {c} - 4 \, a c\right ) + 4 \, {\left (2 \, c^{2} x^{4} + 5 \, b c x^{2} - 4 \, a c\right )} \sqrt {c x^{4} + b x^{2} + a}}{32 \, c x^{2}}, \frac {6 \, \sqrt {a} b c x^{2} \log \left (-\frac {{\left (b^{2} + 4 \, a c\right )} x^{4} + 8 \, a b x^{2} - 4 \, \sqrt {c x^{4} + b x^{2} + a} {\left (b x^{2} + 2 \, a\right )} \sqrt {a} + 8 \, a^{2}}{x^{4}}\right ) - 3 \, {\left (b^{2} + 4 \, a c\right )} \sqrt {-c} x^{2} \arctan \left (\frac {\sqrt {c x^{4} + b x^{2} + a} {\left (2 \, c x^{2} + b\right )} \sqrt {-c}}{2 \, {\left (c^{2} x^{4} + b c x^{2} + a c\right )}}\right ) + 2 \, {\left (2 \, c^{2} x^{4} + 5 \, b c x^{2} - 4 \, a c\right )} \sqrt {c x^{4} + b x^{2} + a}}{16 \, c x^{2}}, \frac {24 \, \sqrt {-a} b c x^{2} \arctan \left (\frac {\sqrt {c x^{4} + b x^{2} + a} {\left (b x^{2} + 2 \, a\right )} \sqrt {-a}}{2 \, {\left (a c x^{4} + a b x^{2} + a^{2}\right )}}\right ) + 3 \, {\left (b^{2} + 4 \, a c\right )} \sqrt {c} x^{2} \log \left (-8 \, c^{2} x^{4} - 8 \, b c x^{2} - b^{2} - 4 \, \sqrt {c x^{4} + b x^{2} + a} {\left (2 \, c x^{2} + b\right )} \sqrt {c} - 4 \, a c\right ) + 4 \, {\left (2 \, c^{2} x^{4} + 5 \, b c x^{2} - 4 \, a c\right )} \sqrt {c x^{4} + b x^{2} + a}}{32 \, c x^{2}}, \frac {12 \, \sqrt {-a} b c x^{2} \arctan \left (\frac {\sqrt {c x^{4} + b x^{2} + a} {\left (b x^{2} + 2 \, a\right )} \sqrt {-a}}{2 \, {\left (a c x^{4} + a b x^{2} + a^{2}\right )}}\right ) - 3 \, {\left (b^{2} + 4 \, a c\right )} \sqrt {-c} x^{2} \arctan \left (\frac {\sqrt {c x^{4} + b x^{2} + a} {\left (2 \, c x^{2} + b\right )} \sqrt {-c}}{2 \, {\left (c^{2} x^{4} + b c x^{2} + a c\right )}}\right ) + 2 \, {\left (2 \, c^{2} x^{4} + 5 \, b c x^{2} - 4 \, a c\right )} \sqrt {c x^{4} + b x^{2} + a}}{16 \, c x^{2}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^4+b*x^2+a)^(3/2)/x^3,x, algorithm="fricas")

[Out]

[1/32*(12*sqrt(a)*b*c*x^2*log(-((b^2 + 4*a*c)*x^4 + 8*a*b*x^2 - 4*sqrt(c*x^4 + b*x^2 + a)*(b*x^2 + 2*a)*sqrt(a
) + 8*a^2)/x^4) + 3*(b^2 + 4*a*c)*sqrt(c)*x^2*log(-8*c^2*x^4 - 8*b*c*x^2 - b^2 - 4*sqrt(c*x^4 + b*x^2 + a)*(2*
c*x^2 + b)*sqrt(c) - 4*a*c) + 4*(2*c^2*x^4 + 5*b*c*x^2 - 4*a*c)*sqrt(c*x^4 + b*x^2 + a))/(c*x^2), 1/16*(6*sqrt
(a)*b*c*x^2*log(-((b^2 + 4*a*c)*x^4 + 8*a*b*x^2 - 4*sqrt(c*x^4 + b*x^2 + a)*(b*x^2 + 2*a)*sqrt(a) + 8*a^2)/x^4
) - 3*(b^2 + 4*a*c)*sqrt(-c)*x^2*arctan(1/2*sqrt(c*x^4 + b*x^2 + a)*(2*c*x^2 + b)*sqrt(-c)/(c^2*x^4 + b*c*x^2
+ a*c)) + 2*(2*c^2*x^4 + 5*b*c*x^2 - 4*a*c)*sqrt(c*x^4 + b*x^2 + a))/(c*x^2), 1/32*(24*sqrt(-a)*b*c*x^2*arctan
(1/2*sqrt(c*x^4 + b*x^2 + a)*(b*x^2 + 2*a)*sqrt(-a)/(a*c*x^4 + a*b*x^2 + a^2)) + 3*(b^2 + 4*a*c)*sqrt(c)*x^2*l
og(-8*c^2*x^4 - 8*b*c*x^2 - b^2 - 4*sqrt(c*x^4 + b*x^2 + a)*(2*c*x^2 + b)*sqrt(c) - 4*a*c) + 4*(2*c^2*x^4 + 5*
b*c*x^2 - 4*a*c)*sqrt(c*x^4 + b*x^2 + a))/(c*x^2), 1/16*(12*sqrt(-a)*b*c*x^2*arctan(1/2*sqrt(c*x^4 + b*x^2 + a
)*(b*x^2 + 2*a)*sqrt(-a)/(a*c*x^4 + a*b*x^2 + a^2)) - 3*(b^2 + 4*a*c)*sqrt(-c)*x^2*arctan(1/2*sqrt(c*x^4 + b*x
^2 + a)*(2*c*x^2 + b)*sqrt(-c)/(c^2*x^4 + b*c*x^2 + a*c)) + 2*(2*c^2*x^4 + 5*b*c*x^2 - 4*a*c)*sqrt(c*x^4 + b*x
^2 + a))/(c*x^2)]

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^4+b*x^2+a)^(3/2)/x^3,x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Unab
le to divide, perhaps due to rounding error%%%{%%{[1,0]:[1,0,%%%{-1,[1]%%%}]%%},[4,0,0]%%%}+%%%{%%{[-2,0]:[1,0
,%%%{-1,[1]%%%}]%%},[2,1,0]%%%}+%%%{%%{[1,0]:[1,0,%%%{-1,[1]%%%}]%%},[0,2,0]%%%} / %%%{%%%{1,[1]%%%},[4,0,0]%%
%}+%%%{%%%{-2,[1]%%%},[2,1,0]%%%}+%%%{%%%{1,[1]%%%},[0,2,0]%%%} Error: Bad Argument Value

________________________________________________________________________________________

maple [A]  time = 0.02, size = 170, normalized size = 1.13 \begin {gather*} \frac {\sqrt {c \,x^{4}+b \,x^{2}+a}\, c \,x^{2}}{4}+\frac {3 a \sqrt {c}\, \ln \left (\frac {c \,x^{2}+\frac {b}{2}}{\sqrt {c}}+\sqrt {c \,x^{4}+b \,x^{2}+a}\right )}{4}-\frac {3 \sqrt {a}\, b \ln \left (\frac {b \,x^{2}+2 a +2 \sqrt {c \,x^{4}+b \,x^{2}+a}\, \sqrt {a}}{x^{2}}\right )}{4}+\frac {3 b^{2} \ln \left (\frac {c \,x^{2}+\frac {b}{2}}{\sqrt {c}}+\sqrt {c \,x^{4}+b \,x^{2}+a}\right )}{16 \sqrt {c}}+\frac {5 \sqrt {c \,x^{4}+b \,x^{2}+a}\, b}{8}-\frac {\sqrt {c \,x^{4}+b \,x^{2}+a}\, a}{2 x^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^4+b*x^2+a)^(3/2)/x^3,x)

[Out]

1/4*c*x^2*(c*x^4+b*x^2+a)^(1/2)+5/8*b*(c*x^4+b*x^2+a)^(1/2)+3/16*b^2*ln((c*x^2+1/2*b)/c^(1/2)+(c*x^4+b*x^2+a)^
(1/2))/c^(1/2)+3/4*a*c^(1/2)*ln((c*x^2+1/2*b)/c^(1/2)+(c*x^4+b*x^2+a)^(1/2))-1/2*a/x^2*(c*x^4+b*x^2+a)^(1/2)-3
/4*a^(1/2)*b*ln((b*x^2+2*a+2*(c*x^4+b*x^2+a)^(1/2)*a^(1/2))/x^2)

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^4+b*x^2+a)^(3/2)/x^3,x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*a*c-b^2>0)', see `assume?` f
or more details)Is 4*a*c-b^2 positive, negative or zero?

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (c\,x^4+b\,x^2+a\right )}^{3/2}}{x^3} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*x^2 + c*x^4)^(3/2)/x^3,x)

[Out]

int((a + b*x^2 + c*x^4)^(3/2)/x^3, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (a + b x^{2} + c x^{4}\right )^{\frac {3}{2}}}{x^{3}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**4+b*x**2+a)**(3/2)/x**3,x)

[Out]

Integral((a + b*x**2 + c*x**4)**(3/2)/x**3, x)

________________________________________________________________________________________